论文标题

相对论重型离子碰撞中两极分化的旋转式费物的集体动力学

Collective dynamics of polarized spin-half fermions in relativistic heavy-ion collisions

论文作者

Singh, Rajeev

论文摘要

相对论的流体动力学在描述重离子碰撞实验中产生的强相互作用物质的特性非常成功。最近,在该领域取得了重大进步,以解释这些过程中发出的Hadron的自旋极化。尽管当前的模型已成功地基于自旋涡流耦合解释了一些实验数据,但它们仍然缺乏对差异测量值的清晰了解。这表明旋转需要被视为独立的自由度,其动力学并不完全与流动循环无关。特别是,如果自旋是系统的宏观特性,则在平衡状态下,其动力学应遵循流体动力学定律。在本文中,我们开发了一个相对论完美流体动力学的框架,其中包括从动力学理论中自由的自由度,并将其用于建模相对论重型离子碰撞中产生的物质动力学。经过实验观察,我们假设极化效应是较小的,并且基于De Groot-van leeuwen-van weert weert pseudogauge的净 - 巴里亚电流,能量量张量和旋转张量。随后,我们介绍自旋极化张量及其组件的各种特性,分析自旋极化成分的传播特性,并为任意统计数据得出自旋波速度。我们发现,只有横向自旋组件类似于EM波。最后,我们研究了符合某些时空对称性的系统自旋极化的时空演变,并计算每个粒子的平均自旋极化,这可以与实验数据进行比较。我们发现,对于某些可观察到的,我们的自旋极化结果与实验发现和其他模型计算有定性一致。

Relativistic hydrodynamics has been quite successful in describing the properties of strongly-interacting matter produced in heavy-ion collision experiments. Recently, there has been a significant advancement in this field to explain the spin polarization of hadrons emitted in these processes. Although current models have successfully explained some of the experimental data based on spin-vorticity coupling, they still lack a clear understanding of differential measurements. This is an indication that the spin needs to be treated as an independent degree of freedom whose dynamics is not entirely bound to flow circulation. In particular, if the spin is a macroscopic property of the system, in equilibrium its dynamics should follow hydrodynamic laws. In this thesis, we develop a framework of relativistic perfect-fluid hydrodynamics which includes spin degrees of freedom from kinetic theory, and use it for modeling the dynamics of matter produced in relativistic heavy-ion collisions. Following experimental observations, we assume that the polarization effects are small and derive conservation laws for net-baryon current, energy-momentum tensor, and spin tensor based on the de Groot-van Leeuwen-van Weert pseudogauge. Subsequently, we present various properties of the spin polarization tensor and its components, analyze the propagation properties of the spin polarization components, and derive the spin-wave velocity for arbitrary statistics. We find that only the transverse spin components propagate, analogously to the EM waves. Finally, we study the spacetime evolution of spin polarization for the systems respecting certain spacetime symmetries and calculate the mean spin polarization per particle, which can be compared to the experimental data. We find that, for some observables, our spin polarization results agree qualitatively with the experimental findings and other model calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源