论文标题
人工智能技术支持研究评估:评论
Artificial intelligence technologies to support research assessment: A review
论文作者
论文摘要
该文献综述确定了与文章文本(例如标题,摘要,长度,引用的参考和可读性)或元数据(例如作者,国际或国内合作的数量,期刊影响因素和作者的H-index的数量)相关的指标。这包括使用机器学习技术来预测期刊文章或会议论文的质量分数的研究。文献综述还包括有关英国以前的研究评估练习(RAES)(RAES)和不同受试者和年份的参考以及其他国家(例如其他国家(例如澳大利亚和意大利)中的类似证据)的参考书目指标和质量评分排名之间关联强度的证据。为了支持这一点,该文档还调查了使用引用,社交媒体指控者或开放评论文本的公共数据集(例如,维度,运算率,Altmetric.com和Publons)来帮助预测文章的学术影响。如该项目的AI实验报告所述,使用机器学习来预测Ref Journal Artial质量分数,使用机器学习来告知实验的结果。文献综述还涵盖了自动化编辑流程的技术,为论文和审阅者的建议提供质量控制,以将审稿人与文章相匹配,并自动将期刊文章分类为领域。还讨论了技术辅助评估的偏见和透明度。
This literature review identifies indicators that associate with higher impact or higher quality research from article text (e.g., titles, abstracts, lengths, cited references and readability) or metadata (e.g., the number of authors, international or domestic collaborations, journal impact factors and authors' h-index). This includes studies that used machine learning techniques to predict citation counts or quality scores for journal articles or conference papers. The literature review also includes evidence about the strength of association between bibliometric indicators and quality score rankings from previous UK Research Assessment Exercises (RAEs) and REFs in different subjects and years and similar evidence from other countries (e.g., Australia and Italy). In support of this, the document also surveys studies that used public datasets of citations, social media indictors or open review texts (e.g., Dimensions, OpenCitations, Altmetric.com and Publons) to help predict the scholarly impact of articles. The results of this part of the literature review were used to inform the experiments using machine learning to predict REF journal article quality scores, as reported in the AI experiments report for this project. The literature review also covers technology to automate editorial processes, to provide quality control for papers and reviewers' suggestions, to match reviewers with articles, and to automatically categorise journal articles into fields. Bias and transparency in technology assisted assessment are also discussed.