论文标题

DELS-MVS:深层验证线搜索多视图立体声

DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo

论文作者

Sormann, Christian, Santellani, Emanuele, Rossi, Mattia, Kuhn, Andreas, Fraundorfer, Friedrich

论文摘要

我们为基于深度学习的多视图立体声(MV)提出了一种新颖的方法。对于参考图像中的每个像素,我们的方法利用深度体系结构来沿相应的表现线直接搜索源图像中的相应点。我们表示我们的方法dels-mvs:深层线搜索多视图立体声。先前的深MV中的作品在深度空间内选择了一个兴趣范围,将其离散,并根据结果深度值进行样品样品:这可能会导致对异地线的不均匀扫描,因此图像空间的扫描。取而代之的是,我们的方法直接在异性线上工作:这可以保证对图像空间进行均匀的扫描,并避免选择感兴趣的深度范围的需求,这通常不知道先验,并且可以在场景之间变化,并且需要对深度空间进行适当的离散化。实际上,我们的搜索是迭代的,它避免了建立成本量,既要存储和处理都昂贵。最后,我们的方法对估计的深度图进行了强大的几何感知融合,并利用在每个深度并肩预测的置信度。我们在ETH3D,坦克和神庙和DTU基准测试中测试DELS-MV,并在最先进的方法方面取得了竞争成果。

We propose a novel approach for deep learning-based Multi-View Stereo (MVS). For each pixel in the reference image, our method leverages a deep architecture to search for the corresponding point in the source image directly along the corresponding epipolar line. We denote our method DELS-MVS: Deep Epipolar Line Search Multi-View Stereo. Previous works in deep MVS select a range of interest within the depth space, discretize it, and sample the epipolar line according to the resulting depth values: this can result in an uneven scanning of the epipolar line, hence of the image space. Instead, our method works directly on the epipolar line: this guarantees an even scanning of the image space and avoids both the need to select a depth range of interest, which is often not known a priori and can vary dramatically from scene to scene, and the need for a suitable discretization of the depth space. In fact, our search is iterative, which avoids the building of a cost volume, costly both to store and to process. Finally, our method performs a robust geometry-aware fusion of the estimated depth maps, leveraging a confidence predicted alongside each depth. We test DELS-MVS on the ETH3D, Tanks and Temples and DTU benchmarks and achieve competitive results with respect to state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源