论文标题

机器学习增强的方法,用于在声发射图中进行自动化的日quake检测

A Machine Learning Enhanced Approach for Automated Sunquake Detection in Acoustic Emission Maps

论文作者

Mercea, Vanessa, Paraschiv, Alin Razvan, Lacatus, Daniela Adriana, Marginean, Anca, Besliu-Ionescu, Diana

论文摘要

日光是在太阳表面可见的地震排放,与某些太阳耀斑有关。尽管在1998年被发现,但它们直到最近才成为一种更常见的现象。据我们所知,尽管有几种手动检测指南可用,但用于日光的天体物理数据是机器学习领域的新事物。对于人类运营商来说,检测日quake是一项艰巨的任务,这项工作旨在缓解并在可能的情况下改善其检测。因此,我们使用全息法引入了一个由太阳周期23和24获得的太阳活性区域的声学egression-Power图构建的数据集。然后,我们提出了一种教学方法,用于应用机器学习表示方法,用于使用自动编码器,对比度学习,对象检测和经常性技术来进行日quake检测,我们通过引入几种自定义域特异性数据增强转换来增强。我们应对自动化探测任务的主要挑战,即活动区域阴影内外的非常高的噪声模式以及由有限数量的框架签名的框架给出的极端阶级不平衡。借助我们训练有素的模型,我们发现了奇特的声发射的时间和空间位置,并将其定性地与喷发和高能量发射相关联。虽然指出这些模型仍处于原型阶段,并且有很大的改善指标和偏见水平的余地,但我们假设他们在例如用例中的同意有可能能够检测到弱太阳声表现形式。

Sunquakes are seismic emissions visible on the solar surface, associated with some solar flares. Although discovered in 1998, they have only recently become a more commonly detected phenomenon. Despite the availability of several manual detection guidelines, to our knowledge, the astrophysical data produced for sunquakes is new to the field of Machine Learning. Detecting sunquakes is a daunting task for human operators and this work aims to ease and, if possible, to improve their detection. Thus, we introduce a dataset constructed from acoustic egression-power maps of solar active regions obtained for Solar Cycles 23 and 24 using the holography method. We then present a pedagogical approach to the application of machine learning representation methods for sunquake detection using AutoEncoders, Contrastive Learning, Object Detection and recurrent techniques, which we enhance by introducing several custom domain-specific data augmentation transformations. We address the main challenges of the automated sunquake detection task, namely the very high noise patterns in and outside the active region shadow and the extreme class imbalance given by the limited number of frames that present sunquake signatures. With our trained models, we find temporal and spatial locations of peculiar acoustic emission and qualitatively associate them to eruptive and high energy emission. While noting that these models are still in a prototype stage and there is much room for improvement in metrics and bias levels, we hypothesize that their agreement on example use cases has the potential to enable detection of weak solar acoustic manifestations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源