论文标题

POPNASV3:图像和时间序列分类的帕累托最佳神经体系结构搜索解决方案

POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image and Time Series Classification

论文作者

Falanti, Andrea, Lomurno, Eugenio, Ardagna, Danilo, Matteucci, Matteo

论文摘要

近年来,自动化的机器学习(AUTOML)字段变得越来越重要。这些算法可以开发模型,而无需专业知识,从而促进了机器学习技术在行业中的应用。神经体系结构搜索(NAS)利用了深度学习技术来自主产生神经网络体系结构,其结果与AI专家手工制作的最先进模型相媲美。但是,这种方法需要大量的计算资源和硬件投资,从而使对现实使用应用程序的吸引力降低了。本文介绍了帕累托最佳的渐进神经体系结构搜索(POPNASV3)的第三版,这是一种新的基于顺序模型的优化NAS算法,靶向不同的硬件环境和多个分类任务。我们的方法能够在大型搜索空间内找到竞争性架构,同时保持灵活的结构和数据处理管道以适应不同的任务。该算法采用帕累托最优性来减少搜索过程中采样的体系结构数量,从而大大提高了时间效率而不会损失准确性。在图像和时间序列分类数据集上执行的实验提供了证据,表明POPNASV3可以探索大量的各种操作员,并收敛到适合不同方案下提供的数据类型的最佳体系结构。

The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源