论文标题

通货膨胀和宇宙学的各个方面非最少耦合和$ r^{2} $ palatini重力

Aspects of Inflation and Cosmology in Non-Minimally Coupled and $R^{2}$ Palatini Gravity

论文作者

Lloyd-Stubbs, Kit

论文摘要

该论文提出了研究,探讨了通货膨胀模型的背景下,在通货膨胀模型的背景下,充气量与RICCI标量无限耦合,或者与RICCI量表中的术语相结合。我们考虑$ r^{2} $重力中的$ ϕ^{2} $ palatini通货膨胀模型,并研究该模型是否可以克服原始$ ϕ^{2} $混乱通货膨胀模型的某些问题。我们通过检查由于普朗克抑制的潜在校正和重新加热而引起的模型参数的约束,研究了该模型与观察到的CMB的兼容性与量子重力中的有效理论时的兼容性。此外,我们考虑了两个可能的再加热渠道,并评估其与$ r^{2} $ term的耦合大小的约束有关的约束。我们提出了Affleck-Dine机制的应用,其中二次$ b $ actrestration潜在术语产生了不对称性,并具有复杂的发电量作为Affleck-Dine领域。我们从分析和数值上得出了在充气冷凝物中产生的$ B $不对称性。我们使用当今的不对称性来限制$ b $竞争质量术语的大小,并在Aftraton质量上获得上限,以使Affleck-Dine动力学与公制和palatini形式的非最终耦合通胀兼容。我们通过分析Q-ball方程的分析推导和对溶液的存在的数值确认,并在该模型可以膨胀和产生Q-balls的一系列范围内,通过分析Q-ball方程和数值确认,在非最小耦合的palatini通胀模型中证明了一类新的通气Q-balls存在。我们得出了这些Q-balls特性的分析估计,探索曲率的效果,并讨论模型的观察性特征。

This thesis presents research exploring aspects of inflation and cosmology in the context of inflation models in which an inflaton is non-minimally coupled to the Ricci scalar, or is considered in conjunction with a term quadratic in the Ricci scalar. We consider a $ϕ^{2}$ Palatini inflation model in $R^{2}$ gravity and investigate whether this model can overcome some of the problems of the original $ϕ^{2}$ chaotic inflation model. We investigate the compatibility of this model with the observed CMB when treated as an effective theory of inflation in quantum gravity by examining the constraints on the model parameters arising due to Planck-suppressed potential corrections and reheating. Additionally, we consider two possible reheating channels and assess their viability in relation to the constraints on the size of the coupling to the $R^{2}$ term. We present an application of the Affleck-Dine mechanism, in which quadratic $B$-violating potential terms generate the asymmetry, with a complex inflaton as the Affleck-Dine field. We derive the $B$ asymmetry generated in the inflaton condensate analytically and numerically. We use the present-day asymmetry to constrain the size of the $B$-violating mass term and derive an upper bound on the inflaton mass in order for the Affleck-Dine dynamics to be compatible with non-minimally coupled inflation in the metric and Palatini formalisms. We demonstrate the existence of a new class of inflatonic Q-balls in a non-minimally coupled Palatini inflation model, through an analytical derivation of the Q-ball equation and numerical confirmation of the existence of solutions, and derive a range of the inflaton mass squared within which the model can inflate and produce Q-balls. We derive analytical estimates of the properties of these Q-balls, explore the effects of curvature, and discuss observational signatures of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源