论文标题
分散:一种新的普通信封形式主义
SCATTER: A New Common Envelope Formalism
论文作者
论文摘要
最神秘的天体物理状态之一是二进制进化的共同信封(CE)阶段,其中两颗恒星被其中一个被剥离的信封所包围。恒星与信封之间的相互作用缩小了轨道。 CE可以导致合并或随后的相互作用阶段。合并可能涉及两个紧凑物体和/或恒星的任何组合。有些涉及白矮人,可能会产生IA型超新星,而合并中子恒星可能会产生伽马射线爆发,并且合并各种的紧凑物体会产生引力辐射。由于CE可能来自各种不同的初始条件,并且由于所涉及的过程的复杂性,因此很难预测其最终状态。当考虑许多系统时,如人群综合计算中,通常采用了保护原则。在这里,我们以新的方式使用角动量来得出最终轨道分离的简单表达式。该方法为研究二进制的研究提供了优势,并且特别适合高阶倍数,现在认为在潜在合并的起源中很重要。在这里,我们专注于二进制文件中的CES,后续文件将我们的形式主义扩展到了CE发生的多个恒星系统。
One of the most mysterious astrophysical states is the common envelope (CE) phase of binary evolution, in which two stars are enshrouded by the envelope shed by one of them. Interactions between the stars and the envelope shrinks the orbit. The CE can lead to mergers or to a subsequent phase of interactions. Mergers may involve any combination of two compact objects and/or stars. Some involving white dwarfs, may produce Type Ia supernovae, while merging neutron stars may yield gamma-ray bursts, and merging compact objects of all kinds produce gravitational radiation. Since CEs can arise from a variety of different initial conditions, and due to the complexity of the processes involved, it is difficult to predict their end states. When many systems are being considered, as in population synthesis calculations, conservation principles are generally employed. Here we use angular momentum in a new way to derive a simple expression for the final orbital separation. This method provides advantages for the study of binaries and is particularly well-suited to higher order multiples, now considered to be important in the genesis of potential mergers. Here we focus on CEs in binaries, and the follow-up paper extends our formalism to multiple star systems within which a CE occurs.