论文标题
在几乎正交系列中
On Almost Orthogonal Series
论文作者
论文摘要
在这项工作中,我们证明了贝塞尔不平等和riesz-fisher定理在希尔伯特空间相对于序列的类似物。我们将广义的贝塞尔不等式应用于与正常,beta,伽马和某些离散概率分布相关的希尔伯特空间,以显示如何系统地生成特殊功能的某些类型的不平等。
In this work we prove analogues of Bessel inequality and Riesz-Fisher theorem in Hilbert spaces with respect to sequences. We apply our generalized Bessel inequality to the Hilbert spaces associated with the Normal, Beta, Gamma and certain discrete probability distributions to show how to generate certain type of inequalities for special functions systematically.