论文标题
对球形簇进行量化建模
Made-to-Measure Modelling of Globular Clusters
论文作者
论文摘要
我们介绍了制造量化方法将动态系统建模到球形簇的第一个应用。通过制造的量化算法,在系统通过重力$ n $体内代码向前演变,直到模型群集能够重现观察到的群集的精选属性,因此调整了模型集群中各个粒子的质量。该方法首先应用于模拟各向同性和各向异性簇的观察,同时拟合群集的三维密度或投影密度曲线,密度加权均值速度曲线或与单个均值速度曲线的密度均值速度或密度曲线。我们发现,如果与簇的投影表面密度或投影的运动学特性相对,则可以通过制造的方法可以轻松地复制群集的三维密度曲线。如果观察到的簇是各向异性的,则仅适合群集的密度曲线和单个于点的速度曲线,才能完全恢复全部各向异性的程度。只要拟合中包括两个运动学特性,可以回收部分各向异性。我们进一步将方法应用于观测到银河球体M4的观察结果,并生成了群集的完整六维表示,该群集复制了其表面密度曲线,均值正确的适当运动速度曲线以及于点的视线速度线。 M2M方法预测M4主要是各向同性的,质量为$ 9.2 \ pm 0.4 \ times 10^4 \,m _ {\ odot} $,半径为$ 3.7 \ pm 0.1 $ 0.1 $ PC。
We present the first application of the made-to-measure method for modelling dynamical systems to globular clusters. Through the made-to-measure algorithm, the masses of individual particles within a model cluster are adjusted while the system evolves forward in time via a gravitational $N$-body code until the model cluster is able to reproduce select properties of an observed cluster. The method is first applied to observations of mock isotropic and anisotropic clusters while fitting against the cluster's three dimensional or projected density profile, density weighted mean-squared velocity profile, or its density profile with individual mean-squared velocity profiles. We find that a cluster's three-dimensional density profile can easily be reproduced by the made-to-measure method, with minor discrepancies in the outer regions if fitting against a cluster's projected surface density or projected kinematic properties. If an observed cluster is anisotropic, only fitting against the cluster's density profile and individual mean-squared velocity profiles will fully recover the full degree of anisotropy. Partial anisotropy can be recovered as long as two kinematic properties are included in the fit. We further apply the method to observations of the Galactic globular cluster M4 and generate a complete six-dimensional representation of the cluster that reproduces observations of its surface density profile, mean-squared proper motion velocity profile, and mean-squared line of sight velocity profile. The M2M method predicts M4 is primarily isotropic with a mass of $9.2 \pm 0.4 \times 10^4\, M_{\odot}$ and a half-mass radius of $3.7 \pm 0.1$ pc.