论文标题

评论“自旋轨道耦合引起的磁力动力学超高旋转生成”,并提供有关如何验证计算量子传输科学软件的处方

Comment on "Spin-orbit coupling induced ultrahigh-harmonic generation from magnetic dynamics" with prescriptions on how to validate scientific software for computational quantum transport

论文作者

Nikolic, Branislav K., Manjarres, Jalil Varela

论文摘要

在最近的论文中[物理学。 Rev. b {\ bf 105},L180415(2022)],Ly和Manchon使用开源代码{\ tt tkwant}用于时间依赖时间的计算量子传输,以预测当前通过磁态的频率(在频率上)的频率(coyplot)的频率,以预测当前泵送当前泵送的成熟领域。 $ω_0$的磁化进动和高谐波$ n =ω/ω_0$,达到{\ em令人惊讶的高} cutoff \ mbox {$ n_ \ mathrm {max} \ simeq 1000 $}。但是,本文中的结果违反了时间相关的量子传输的两个基本定理:({\ em i})当前对时间周期外部场{\ em必须完全周期性}本身在长时间的限制中,因为其两端设备的长时间限制,因为其活性区域附着在两个半含量的引线上,带来了持续的能量谱。 ({\ em ii})在左右对称的两端设备中不允许电荷电流的直流分量,或者在非对称设备中不能通过简单地增加SO耦合来更改其值。我们通过使用完全不同的计算来说明这两个定理,该计算应用于具有铁磁(该设备为左右对称的设备)和抗铁磁磁性(对于该设备,设备是左右非对称区域)主持Rashba的活性区域。我们得出的结论是,在存在耦合的情况下,泵送电流中的谐波确实存在,但是它们的``Ultrahigh''cutoff是``bugs'''的伪像,或者是在{\ tt tkwant}中选择的算法不足}。最后,我们建议{\ em验证}时间相关的量子传输代码或用户在部署以制作研究论文之前,在经过预先验证的(通过开发人员)代码中选择算法的策略。

In a recent paper [Phys. Rev. B {\bf 105}, L180415 (2022)], Ly and Manchon used open source code {\tt TKWANT} for time-dependent computational quantum transport to predict surprising features in the mature field of current pumping by magnetization dynamics in spintronics -- in the presence of spin-orbit (SO) coupling, the pumped charge current oscillates at both the frequency $ω_0$ of magnetization precession and high harmonics $N=ω/ω_0$, reaching {\em astonishingly high} cutoff \mbox{$N_\mathrm{max} \simeq 1000$} by increasing the SO coupling. However, results in the paper violate two basic theorems of time-dependent quantum transport: ({\em i}) current response to time-periodic external field {\em must be perfectly periodic} itself in the long time limit for a two-terminal device because its active region is attached to two semi-infinite leads bringing continuous energy spectrum; and ({\em ii}) no DC component of charge current is allowed in the left-right symmetric two-terminal devices, or in asymmetric devices its value cannot be changed by simply increasing the SO coupling. We illustrate these two theorems by using completely different calculations applied to one-dimensional two-terminal devices with either ferromagnetic (for which the device is left-right symmetric) and antiferromagnetic (for the device is left-right asymmetric) active region hosting the Rashba SO coupling. We conclude that harmonics in pumped current in the presence of SO coupling do exist, but their ``ultrahigh'' cutoff is an artifact of either ``bugs'' or inadequate algorithms selected within {\tt TKWANT}. Finally, we suggest strategies for {\em validating} time-dependent quantum transport codes, or selection of algorithms by a user within putatively validated (by developers) code, prior to deploying them to produce research papers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源