论文标题

六曲线和K稳定性属的模量

Moduli of Genus Six Curves and K-stability

论文作者

Zhao, Junyan

论文摘要

K-Moduli理论提供了曲线模量空间的不同压缩。作为一般属六曲线可以将典型嵌入到光滑的Quintic del pezzo表面中,我们在本文中研究了Quintic logo fano对的K-Moduli空间$ \ OVERLINE {M}^K(C)$。我们通过明确描述墙壁交叉结构来对k-moduli中出现的六曲线$ c $的阶层进行分类。 K-Moduli空间通过Hodge理论构建的两个由GIT和Moduli构建的Birational Moduli空间插值。

The K-moduli theory provides a different compactification of moduli spaces of curves. As a general genus six curve can be canonically embedded into the smooth quintic del Pezzo surface, we study in this paper the K-moduli spaces $\overline{M}^K(c)$ of the quintic log Fano pairs. We classify the strata of genus six curves $C$ appearing in the K-moduli by explicitly describing the wall-crossing structure. The K-moduli spaces interpolate between two birational moduli spaces constructed by GIT and moduli of K3 surfaces via Hodge theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源