论文标题

通过学习和删除特定领域的特征来概括领域的概括

Domain Generalization by Learning and Removing Domain-specific Features

论文作者

Ding, Yu, Wang, Lei, Liang, Bin, Liang, Shuming, Wang, Yang, Chen, Fang

论文摘要

当测试数据集遵循与培训数据集不同的分布时,深度神经网络(DNN)会遭受域的转移。领域的概括旨在通过学习一个可以推广到看不见的领域的模型来解决这个问题。在本文中,我们提出了一种新方法,旨在明确删除特定领域特定特征以进行域的概括。遵循这种方法,我们提出了一个新颖的框架,称为学习和删除特定于域的特定特征(LRDG),该特征通过从输入图像中删除特定于域特异性特征来学习域不变模型。具体而言,我们设计了一个分类器,分别有效地学习每个源域的特定域特征。然后,我们开发了一个编码器 - 编码器网络,将每个输入图像映射到一个新的图像空间中,在该空间中删除了特定于特定的域特征。借助编码器 - 编码器网络输出的图像,另一个分类器旨在学习进行图像分类的域不变特征。广泛的实验表明,与最先进的方法相比,我们的框架取得了出色的性能。

Deep Neural Networks (DNNs) suffer from domain shift when the test dataset follows a distribution different from the training dataset. Domain generalization aims to tackle this issue by learning a model that can generalize to unseen domains. In this paper, we propose a new approach that aims to explicitly remove domain-specific features for domain generalization. Following this approach, we propose a novel framework called Learning and Removing Domain-specific features for Generalization (LRDG) that learns a domain-invariant model by tactically removing domain-specific features from the input images. Specifically, we design a classifier to effectively learn the domain-specific features for each source domain, respectively. We then develop an encoder-decoder network to map each input image into a new image space where the learned domain-specific features are removed. With the images output by the encoder-decoder network, another classifier is designed to learn the domain-invariant features to conduct image classification. Extensive experiments demonstrate that our framework achieves superior performance compared with state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源