论文标题

笛卡尔产品中总共可见性数量零且总相互可视性的图表

Graphs with total mutual-visibility number zero and total mutual-visibility in Cartesian products

论文作者

Tian, Jing, Klavžar, Sandi

论文摘要

如果$ g $是图形和$ x \ subseteq v(g)$,则$ x $是总共相互可视性集,如果每对顶点$ x $ x $和$ y $ of $ g $ of最短$ x,y $ - $ -path $ p $,$ v(p)\ cap x \ cap x \ subseteq \ subseteq \ subseteq \ {x,x,y \ {x,y \ { $ g $的最大共同可见性集的基数是$ g $的总互及可见度数量$μ_ {\ rm t}(g)$。具有$μ_ {\ rm t}(g)= 0 $的图表的图表为图形,其中没有顶点是convex $ p_3 $的中心顶点。笛卡尔产品的总相互视野数量是有限的,并证明了几个确切的结果。例如,$μ_ {\ rm t}(k_n \,\ square \,k_m)= \ max \ {n,m \} $和$μ_ {\ rm t}(t \,\ square \ square \,h)一棵树和$ h $一个任意图。还证明了$μ_ {\ rm t}(g \,\ square \,h)$可以任意大于$μ_ {\ rm t}(g)μ_ {\ rm t}(h)$。

If $G$ is a graph and $X\subseteq V(G)$, then $X$ is a total mutual-visibility set if every pair of vertices $x$ and $y$ of $G$ admits a shortest $x,y$-path $P$ with $V(P) \cap X \subseteq \{x,y\}$. The cardinality of a largest total mutual-visibility set of $G$ is the total mutual-visibility number $μ_{\rm t}(G)$ of $G$. Graphs with $μ_{\rm t}(G) = 0$ are characterized as the graphs in which no vertex is the central vertex of a convex $P_3$. The total mutual-visibility number of Cartesian products is bounded and several exact results proved. For instance, $μ_{\rm t}(K_n\,\square\, K_m) = \max\{n,m\}$ and $μ_{\rm t}(T\,\square\, H) = μ_{\rm t}(T)μ_{\rm t}(H)$, where $T$ is a tree and $H$ an arbitrary graph. It is also demonstrated that $μ_{\rm t}(G\,\square\, H)$ can be arbitrary larger than $μ_{\rm t}(G)μ_{\rm t}(H)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源