论文标题

计算电磁学中的多级域不确定性定量

Multilevel Domain Uncertainty Quantification in Computational Electromagnetics

论文作者

Aylwin, Rubén, Jerez-Hanckes, Carlos, Schwab, Christoph, Zech, Jakob

论文摘要

我们继续我们的研究[计算电磁学中的域不确定性定量,JUQ(2020),8:301---341],用于麦克斯韦损失腔的时间谐波电磁场的数值近似,用于不确定的几何形状。我们采用相同的仿射参数参数化框架,将物理域映射到具有分段平滑图的名义多边形域。标称域上回调解决方案的规律性在分段Sobolev空间中进行了特征。我们证明了误差收敛速率并优化了参数的算法转向,用于在名义结构域中的边元素离散化的参数与以下组合结合:此外,我们分析了稀疏网格插值以计算域之间映射的替代物。所有计算均在多面体标称域上进行,该域可实现标准的简单有限元网格。我们提供了严格的完全离散的误差分析,并在所有情况下都表明,实现了无关的代数融合。对于多级稀疏网格正交方法,我们证明了高阶收敛速率,这些收敛速率没有所谓的维度诅咒,即独立于用于参数可允许形状的参数数量。数值实验证实了我们的理论结果,并验证了稀疏网格方法的优越性。

We continue our study [Domain Uncertainty Quantification in Computational Electromagnetics, JUQ (2020), 8:301--341] of the numerical approximation of time-harmonic electromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the same affine-parametric shape parametrization framework, mapping the physical domains to a nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions on the nominal domain is characterized in piecewise Sobolev spaces. We prove error convergence rates and optimize the algorithmic steering of parameters for edge-element discretizations in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel, sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of the domain-to-solution mappings. All calculations are performed on the polyhedral nominal domain, which enables the use of standard simplicial finite element meshes. We provide a rigorous fully discrete error analysis and show, in all cases, that dimension-independent algebraic convergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order convergence rates which are free from the so-called curse of dimensionality, i.e. independent of the number of parameters used to parametrize the admissible shapes. Numerical experiments confirm our theoretical results and verify the superiority of the sparse-grid methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源