论文标题

非热级高阶Weyl半学,表面可分解点

Non-Hermitian higher-Order Weyl semimetal with surface diabolic points

论文作者

Bid, Subhajyoti, Dash, Gaurab Kumar, Thakurathi, Manisha

论文摘要

非热式(NH)系统中的高阶拓扑已成为凝结物理学中最有前途和迅速发展的领域之一。这些系统中显示了Hermitian等效物中不存在的许多不同阶段。在这项工作中,我们研究了NH扰动如何影响高阶Weyl半学。我们确定了一种新型的拓扑半学,即具有表面可糖化点的非炎症高阶Weyl半学(NHHOWS)。我们证明,在这样的NHHOWS中,可以创建和歼灭批量内部的新特殊点,从而使我们能够操纵它们的数字。在边界上,这些特殊点通过具有可分子点和铰链状态的独特表面状态连接。对于特定的系统参数,NHHOW的表面表现为具有线性分散或具有二次分散的Luttinger相的零相,从而为Dirac-Luttinger切换铺平了道路。最后,我们采用生物表达技术来恢复NH系统的标准体积边界对应关系并计算拓扑不变性。所获得的量化生物三相的Chern数和四倍矩在拓扑上分别保护独特的表面和铰链状态。

Higher-order topology in non-Hermitian (NH) systems has recently become one of the most promising and rapidly developing fields in condensed matter physics. Many distinct phases that were not present in the Hermitian equivalents are shown in these systems. In this work, we examine how higher-order Weyl semimetals are impacted by NH perturbation. We identify a new type of topological semimetal, i.e., non-Hermitian higher-order Weyl semimetal (NHHOWS) with surface diabolic points. We demonstrate that in such an NHHOWS, new exceptional points inside the bulk can be created and annihilated, therefore allowing us to manipulate their number. At the boundary, these exceptional points are connected through unique surface states with diabolic points and hinge states. For specific system parameters, the surface of NHHOWS behaves as a Dirac phase with linear dispersion or a Luttinger phase with a quadratic dispersion, thus paving a way for Dirac-Luttinger switching. Finally, we employ the biorthogonal technique to reinstate the standard bulk boundary correspondence for NH systems and compute the topological invariants. The obtained quantized biorthogonal Chern number and quadruple moment topologically protect the unique surface and hinge states, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源