论文标题
在二进制恒星系统中的共同环境演化的模拟:物理模型和数值技术
Simulations of common-envelope evolution in binary stellar systems: physical models and numerical techniques
论文作者
论文摘要
当近距离系统中的主要恒星演变成一个巨型并吞噬其同伴时,其核心和伴侣在一个共同的信封内暂时相互奔跑。阻力将轨道能和角动量传递到包膜材料。根据此过程的效率,可以弹出信封,留下一个紧密的残余二元系统,该系统由两个恒星芯,或将核心合并为保留了信封材料的一部分。公共 - 振动进化的确切结果对于在X射线二进制物,超新星祖细胞,紧凑型对象合并的祖细胞的形成中至关重要,这些祖细胞发出可检测到的引力波的紧凑型对象合并的祖细胞以及许多其他基本天体相关性的对象。表征公共 - 内玻璃相互作用和缺乏空间对称性的空间和颞时间尺度范围广泛的范围为产生一致的模型带来了重大挑战。因此,这些临界阶段是二进制恒星进化的经典治疗方法中不确定性的最大来源之一。至少一部分共同包膜相互作用的三维流体动力模拟是在建模公共 - 层次演化中获得预测能力的关键。我们回顾了此类三维流体动力模拟的理论概念和数值方法的发展。固有的多物理学,多尺度的挑战导致了各种近似值和数值技术。我们总结了迄今为止发布的模拟及其主要结果。鉴于最近的快速进步,对公共 - 内玻璃相互作用的物理学的合理理解已达到范围,因此希望不久之后就可以解决恒星天体物理学的其余基本问题之一。
When the primary star in a close binary system evolves into a giant and engulfs its companion, its core and the companion temporarily orbit each other inside a common envelope. Drag forces transfer orbital energy and angular momentum to the envelope material. Depending on the efficiency of this process, the envelope may be ejected leaving behind a tight remnant binary system of two stellar cores, or the cores merge retaining part of the envelope material. The exact outcome of common-envelope evolution is critical for in the formation of X-ray binaries, supernova progenitors, the progenitors of compact-object mergers that emit detectable gravitational waves, and many other objects of fundamental astrophysical relevance. The wide ranges of spatial and temporal timescales that characterize common-envelope interactions and the lack of spatial symmetries present a substantial challenge to generating consistent models. Therefore, these critical phases are one of the largest sources for uncertainty in classical treatments of binary stellar evolution. Three-dimensional hydrodynamic simulations of at least part of the common envelope interaction are the key to gain predictive power in modeling common-envelope evolution. We review the development of theoretical concepts and numerical approaches for such three-dimensional hydrodynamic simulations. The inherent multi-physics, multi-scale challenges have resulted in a wide variety of approximations and numerical techniques to be exercised on the problem. We summarize the simulations published to date and their main results. Given the recent rapid progress, a sound understanding of the physics of common-envelope interactions is within reach and thus there is hope that one of the remaining fundamental problems of stellar astrophysics may be solved before long.