论文标题

合作混合动力传输光束在无细胞的mmwave mimo网络中

Cooperative Hybrid Transmit Beamforming in Cell-free mmWave MIMO Networks

论文作者

Jafri, Meesam, Srivastava, Suraj, Venkategowda, Naveen K. D., Jagannatham, Aditya K., Hanzo, Lajos

论文摘要

混合编码器和组合器设计用于无单元的多用户毫米波(MMWAVE)多输入多输出(MIMO)蜂窝网络,用于低复杂性干扰性。最初,考虑到总体和每个访问点(AP)功率约束,我们为广播方案提供了最佳混合传输光束形式(HTBF)。接下来,为单播和多播场景提出了最佳连续的混合光束技术技术,该方案依赖于最佳最小差异无失真响应(MVDR)。我们证明,它可以减轻Interuser和Intergroup干扰,同时依次确保对先前计划的用户/用户组的正交性。此外,从理论上讲,提出的方案能够支持大量用户。随后,考虑了一种基于贝叶斯学习的方法(BL)方法,用于共同设计用于所考虑的各种情况的RF和基带预编码器/组合器。此外,我们还构想了HTBF方案的上行链路对应物,该方案基于每个用户的信号接入噪声比(SINR)最大化。最后,所提出的方案的功效以取消插入器/组间干扰方面的广泛仿真为特征,从而提高了光谱效率。

Hybrid precoders and combiners are designed for cooperative cell-free multi-user millimeter wave (mmWave) multiple-input multiple-output (MIMO) cellular networks for low complexity interference mitigation. Initially, we derive an optimal hybrid transmit beamformer (HTBF) for a broadcast scenario considering both total and per access point (AP) power constraints. Next, an optimal successive hybrid beamformer technique is proposed for unicast and multicast scenarios which relies on the optimal minimum variance distortionless response (MVDR). We demonstrate that it mitigates both the interuser and intergroup interference, while successively ensuring orthogonality to the previously scheduled users/user groups. Furthermore, it is shown theoretically that the proposed schemes are capable of supporting a large number of users. Subsequently, a Bayesian learning (BL) based method is conceived for jointly designing the RF and baseband precoders/combiners for the various scenarios considered. Furthermore, we also conceive the uplink counterpart of our HTBF scheme, which is based on maximizing the signal-tointerference-plus noise ratio (SINR) of each individual user. Finally, the efficacy of the proposed schemes is characterized by our extensive simulation results in terms of cancelling the interuser/intergroup interference, which improves the spectral efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源