论文标题

双向扩散:朝着有条件扩散模型的生成恢复先验

Bi-Noising Diffusion: Towards Conditional Diffusion Models with Generative Restoration Priors

论文作者

Mei, Kangfu, Nair, Nithin Gopalakrishnan, Patel, Vishal M.

论文摘要

条件扩散概率模型可以对自然图像的分布进行建模,并根据给定条件生成多种和逼真的样本。但是,由于可观察到的颜色变化和纹理,通常情况下,它们的结果可能是不现实的。我们认为,这个问题是由于模型所学的概率分布与自然图像的分布之间的差异引起的。在每个采样时间步长期间,微妙的条件逐渐扩大了差异。为了解决这个问题,我们引入了一种新方法,该方法将预测的样本带入了使用预验证的无条件扩散模型的训练数据歧管。无条件模型充当正规器,并减少条件模型在每个采样步骤中引入的差异。我们进行全面的实验,以证明我们的方法对超分辨率,着色,湍流去除和图像衍生任务的有效性。通过我们的方法获得的改进表明,可以将先验作为用于改进条件扩散模型的一般插件。

Conditional diffusion probabilistic models can model the distribution of natural images and can generate diverse and realistic samples based on given conditions. However, oftentimes their results can be unrealistic with observable color shifts and textures. We believe that this issue results from the divergence between the probabilistic distribution learned by the model and the distribution of natural images. The delicate conditions gradually enlarge the divergence during each sampling timestep. To address this issue, we introduce a new method that brings the predicted samples to the training data manifold using a pretrained unconditional diffusion model. The unconditional model acts as a regularizer and reduces the divergence introduced by the conditional model at each sampling step. We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks. The improvements obtained by our method suggest that the priors can be incorporated as a general plugin for improving conditional diffusion models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源