论文标题

杨 - 巴克斯特方程的有限能设置理论解决方案

Finite idempotent set-theoretic solutions of the Yang--Baxter equation

论文作者

Colazzo, Ilaria, Jespers, Eric, Kubat, Łukasz, Van Antwerpen, Arne, Verwimp, Charlotte

论文摘要

事实证明,有限的左左左非降级设置理论解决方案$(x,r)$ yang-baxter方程在一组$ x $上取决于$ x $上的左sips simple semogroup结构(尤其是一个有限的同构副本)和某些maps $ q $ q $ q $和$ x $ x $ x $ x $ x $ x $ x $ x $ x $ x $ x $ x。当关联的结构单体被取消时,这种结构正是恰恰是一个组,并且所有地图$φ_x$等于该组的自动形态。同等地,结构代数$ k [m(x,r)] $是正确的noetherian,或者在特征零中必须是半弹药。结构代数始终是Gelfand-kirillov dimension One的左no代表代数。为了证明这些结果,结果表明,结构Semigroup $ s(x,r)$在有限的许多取消semigroups $ s_u $ the digonal索引中,每个$ s_u $都有一组商$ g_u $,这些$ g_u $是有限的by-by-by-(infinite cyclit),这些组的结构是一个简单的结构。 $ x $等于对角线的情况被$ x $上的单个置换完全描述。

It is proven that finite idempotent left non-degenerate set-theoretic solutions $(X,r)$ of the Yang-Baxter equation on a set $X$ are determined by a left simple semigroup structure on $X$ (in particular, a finite union of isomorphic copies of a group) and some maps $q$ and $φ_x$ on $X$, for $x\in X$. This structure turns out to be a group precisely when the associated structure monoid is cancellative and all the maps $φ_x$ are equal to an automorphism of this group. Equivalently, the structure algebra $K[M(X,r)]$ is right Noetherian, or in characteristic zero it has to be semiprime. The structure algebra always is a left Noetherian representable algebra of Gelfand--Kirillov dimension one. To prove these results it is shown that the structure semigroup $S(X,r)$ has a decomposition in finitely many cancellative semigroups $S_u$ indexed by the diagonal, each $S_u$ has a group of quotients $G_u$ that is finite-by-(infinite cyclic) and the union of these groups carries the structure of a left simple semigroup. The case that $X$ equals the diagonal is fully described by a single permutation on $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源