论文标题
自然语言论证中对逻辑谬论的强大而可解释的识别
Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
论文作者
论文摘要
互联网时代已经扩大了错误信息,宣传和有缺陷的论证的传播。鉴于数据的数量和识别违反论证规范的侵犯的微妙之处,支持信息分析任务,例如内容审核,可信赖的方法可以识别逻辑谬论。在本文中,我们将逻辑谬误的先前理论工作正式化为一个综合的三阶段评估框架,粗颗粒和细粒度的分类。我们为评估的每个阶段调整现有评估数据集。我们基于原型推理,基于实例的推理和知识注入的三个家庭。这些方法将语言模型与背景知识和可解释的机制相结合。此外,我们通过数据增强和课程学习的策略来解决数据稀疏性。我们的三阶段框架本地合并了现有任务的先前数据集和方法,例如宣传检测,作为总体评估测试台。我们在数据集中广泛评估了这些方法,重点是它们的鲁棒性和解释性。我们的结果提供了对不同组成部分和谬误类别方法的优势和劣势的见解,表明谬论识别是一项艰巨的任务,可能需要专门的推理来捕获各种阶级。我们在GitHub上共享我们的开源代码和数据,以支持有关逻辑谬误识别的进一步工作。
The spread of misinformation, propaganda, and flawed argumentation has been amplified in the Internet era. Given the volume of data and the subtlety of identifying violations of argumentation norms, supporting information analytics tasks, like content moderation, with trustworthy methods that can identify logical fallacies is essential. In this paper, we formalize prior theoretical work on logical fallacies into a comprehensive three-stage evaluation framework of detection, coarse-grained, and fine-grained classification. We adapt existing evaluation datasets for each stage of the evaluation. We employ three families of robust and explainable methods based on prototype reasoning, instance-based reasoning, and knowledge injection. The methods combine language models with background knowledge and explainable mechanisms. Moreover, we address data sparsity with strategies for data augmentation and curriculum learning. Our three-stage framework natively consolidates prior datasets and methods from existing tasks, like propaganda detection, serving as an overarching evaluation testbed. We extensively evaluate these methods on our datasets, focusing on their robustness and explainability. Our results provide insight into the strengths and weaknesses of the methods on different components and fallacy classes, indicating that fallacy identification is a challenging task that may require specialized forms of reasoning to capture various classes. We share our open-source code and data on GitHub to support further work on logical fallacy identification.