论文标题

部分可观测时空混沌系统的无模型预测

Target Selection and Sample Characterization for the DESI LOW-Z Secondary Target Program

论文作者

Darragh-Ford, Elise, Wu, John F., Mao, Yao-Yuan, Wechsler, Risa H., Geha, Marla, Forero-Romero, Jaime E., Hahn, ChangHoon, Kallivayalil, Nitya, Moustakas, John, Nadler, Ethan O., Nowotka, Marta, Peek, J. E. G., Tollerud, Erik J., Weiner, Benjamin, Aguilar, J., Ahlen, S., Brooks, D., Cooper, A. P., de la Macorra, A., Dey, A., Fanning, K., Font-Ribera, A., Gontcho, S. Gontcho A, Honscheid, K., Kisner, T., Kremin, Anthony, Landriau, M., Levi, Michael E., Martini, P., Meisner, Aaron M., Miquel, R., Myers, Adam D., Nie, Jundan, Palanque-Delabrouille, N., Percival, W. J., Prada, F., Schlegel, D., Schubnell, M., Tarlé, Gregory, Vargas-Magaña, M., Zhou, Zhimin, Zou, H.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We introduce the DESI LOW-Z Secondary Target Survey, which combines the wide-area capabilities of the Dark Energy Spectroscopic Instrument (DESI) with an efficient, low-redshift target selection method. Our selection consists of a set of color and surface brightness cuts, combined with modern machine learning methods, to target low-redshift dwarf galaxies ($z$ < 0.03) between $19 < r < 21$ with high completeness. We employ a convolutional neural network (CNN) to select high-priority targets. The LOW-Z survey has already obtained over 22,000 redshifts of dwarf galaxies (M$_* < 10^9$ M$_\odot$), comparable to the number of dwarf galaxies discovered in SDSS-DR8 and GAMA. As a spare fiber survey, LOW-Z currently receives fiber allocation for just ~50% of its targets. However, we estimate that our selection is highly complete: for galaxies at $z < 0.03$ within our magnitude limits, we achieve better than 95% completeness with ~1% efficiency using catalog-level photometric cuts. We also demonstrate that our CNN selections $z<0.03$ galaxies from the photometric cuts subsample at least ten times more efficiently while maintaining high completeness. The full five-year DESI program will expand the LOW-Z sample, densely mapping the low-redshift Universe, providing an unprecedented sample of dwarf galaxies, and providing critical information about how to pursue effective and efficient low-redshift surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源