论文标题
通过基于物理的边界约束指导连续操作员学习
Guiding continuous operator learning through Physics-based boundary constraints
论文作者
论文摘要
边界条件(BCS)是重要组成约束的重要组,对于偏微分方程(PDE)解决方案所必需的群体以满足特定空间位置。这些约束具有重要的物理意义,并保证了PDE解决方案的存在和独特性。旨在解决PDE的目前基于神经网络的方法仅依赖于训练数据来帮助模型隐含地学习BCS。在评估过程中,不能保证这些模型的卑诗省满意度。在这项工作中,我们提出了边界强制执行操作员网络(BOON),该网络通过对操作员内核进行结构性更改来使神经操作员满意。我们提供了精炼程序,并证明了基于物理的BC的满意度,例如Dirichlet,Neumann和Boon获得的解决方案定期。基于具有多种应用的多个PDE的数值实验表明,所提出的方法可确保BC的满意度,并导致整个域上更准确的解决方案。所提出的校正方法在相对$ l^2 $错误(0.000084相对$ l^2 $错误的汉堡方程式)中,对给定运算符模型展示了(2x-20x)的改进。
Boundary conditions (BCs) are important groups of physics-enforced constraints that are necessary for solutions of Partial Differential Equations (PDEs) to satisfy at specific spatial locations. These constraints carry important physical meaning, and guarantee the existence and the uniqueness of the PDE solution. Current neural-network based approaches that aim to solve PDEs rely only on training data to help the model learn BCs implicitly. There is no guarantee of BC satisfaction by these models during evaluation. In this work, we propose Boundary enforcing Operator Network (BOON) that enables the BC satisfaction of neural operators by making structural changes to the operator kernel. We provide our refinement procedure, and demonstrate the satisfaction of physics-based BCs, e.g. Dirichlet, Neumann, and periodic by the solutions obtained by BOON. Numerical experiments based on multiple PDEs with a wide variety of applications indicate that the proposed approach ensures satisfaction of BCs, and leads to more accurate solutions over the entire domain. The proposed correction method exhibits a (2X-20X) improvement over a given operator model in relative $L^2$ error (0.000084 relative $L^2$ error for Burgers' equation).