论文标题

信用评分和承保中的强化学习

Reinforcement Learning in Credit Scoring and Underwriting

论文作者

Kiatsupaibul, Seksan, Chansiripas, Pakawan, Manopanjasiri, Pojtanut, Visantavarakul, Kantapong, Wen, Zheng

论文摘要

本文提出了一个新颖的增强学习(RL)框架,以应对难以及的背景挑战。我们适应了RL原则以进行信用评分,并结合了行动空间更新和多选项行动。我们的工作表明,传统的承保方法与RL贪婪策略保持一致。我们介绍了两种新的基于RL的信用承保算法,以实现更明智的决策。模拟显示这些新方法在数据与模型一致的方案中优于传统方法。但是,复杂的情况强调了模型限制,强调了强大的机器学习模型对最佳性能的重要性。未来的研究方向包括探索更复杂的模型以及有效的探索机制。

This paper proposes a novel reinforcement learning (RL) framework for credit underwriting that tackles ungeneralizable contextual challenges. We adapt RL principles for credit scoring, incorporating action space renewal and multi-choice actions. Our work demonstrates that the traditional underwriting approach aligns with the RL greedy strategy. We introduce two new RL-based credit underwriting algorithms to enable more informed decision-making. Simulations show these new approaches outperform the traditional method in scenarios where the data aligns with the model. However, complex situations highlight model limitations, emphasizing the importance of powerful machine learning models for optimal performance. Future research directions include exploring more sophisticated models alongside efficient exploration mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源