论文标题

在傅立叶最小渗透/影响猜想中的常数上的下限

A Lower Bound on the Constant in the Fourier Min-Entropy/Influence Conjecture

论文作者

Biswas, Aniruddha, Sarkar, Palash

论文摘要

我们描述了布尔功能的新结构。我们的构造的特定实例提供了30个可变价的布尔功能,其最小透气/影响比为$ 128/45 \约2.8444 $,目前是该比率最高的该比率的最高值,该值是通过任何布尔函数实现的。相应地,$ 128/45 $目前也是傅立叶最小透明/影响猜想的通用常数上最著名的下限。

We describe a new construction of Boolean functions. A specific instance of our construction provides a 30-variable Boolean function having min-entropy/influence ratio to be $128/45 \approx 2.8444$ which is presently the highest known value of this ratio that is achieved by any Boolean function. Correspondingly, $128/45$ is also presently the best known lower bound on the universal constant of the Fourier min-entropy/influence conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源