论文标题

来自全场外位移数据的物理知识的神经网络,用于材料模型校准

Physics-Informed Neural Networks for Material Model Calibration from Full-Field Displacement Data

论文作者

Anton, David, Wessels, Henning

论文摘要

在本构模型中发生的材料参数的识别在实践中具有广泛的应用。这些应用之一是对基础设施建筑物的实际状况进行监视和评估,因为材料参数直接反映了结构对外部影响的阻力。物理知识的神经网络(PINN)最近成为解决反问题的合适方法。这种方法的优点是直接包含观察数据。与基于网格的方法不同,例如最小二乘有限元方法(LS-FEM)方法,不需要计算网格,也不需要数据插值。在当前的工作中,我们提出了PINNS,用于以线性弹性的示例,在现实的状态中从全场位移和全局力数据中校准模型进行校准。我们表明,优化问题的调节和重新制定在现实世界应用中起着至关重要的作用。因此,除其他外,我们还从初始估计值中确定材料参数,并在损失函数中平衡单个项。为了减少已确定的材料参数对位移近似中局部错误的依赖性,我们将标识不基于应力边界条件,而是基于内部和外部工作的全局平衡。我们证明了增强的PINN能够从实验性的一维数据和合成的全场位移数据中识别材料参数。由于由数字图像相关性(DIC)系统测量的位移数据嘈杂,因此我们还研究了该方法对不同级别噪声的鲁棒性。

The identification of material parameters occurring in constitutive models has a wide range of applications in practice. One of these applications is the monitoring and assessment of the actual condition of infrastructure buildings, as the material parameters directly reflect the resistance of the structures to external impacts. Physics-informed neural networks (PINNs) have recently emerged as a suitable method for solving inverse problems. The advantages of this method are a straightforward inclusion of observation data. Unlike grid-based methods, such as the least square finite element method (LS-FEM) approach, no computational grid and no interpolation of the data is required. In the current work, we propose PINNs for the calibration of constitutive models from full-field displacement and global force data in a realistic regime on the example of linear elasticity. We show that conditioning and reformulation of the optimization problem play a crucial role in real-world applications. Therefore, among others, we identify the material parameters from initial estimates and balance the individual terms in the loss function. In order to reduce the dependency of the identified material parameters on local errors in the displacement approximation, we base the identification not on the stress boundary conditions but instead on the global balance of internal and external work. We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data in a realistic regime. Since displacement data measured by, e.g., a digital image correlation (DIC) system is noisy, we additionally investigate the robustness of the method to different levels of noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源