论文标题

基于深度学习的快速瞬态动力学的减少顺序方法

Deep learning-based reduced-order methods for fast transient dynamics

论文作者

Cracco, Martina, Stabile, Giovanni, Lario, Andrea, Sheidani, Armin, Larcher, Martin, Casadei, Folco, Valsamos, Georgios, Rozza, Gianluigi

论文摘要

近年来,大规模的数值模拟在估计城市环境中爆炸事件的影响方面发挥了至关重要的作用,目的是确保城市的安全性和安全性。这样的模拟在计算上很昂贵,通常,一次计算所需的时间很大,不允许参数研究。因此,这项工作的目的是通过采用非侵入性降低订单方法(ROM)来促进实时和多质量计算。我们提出了一个基于学习的(DL)ROM计划,能够处理快速瞬态动力学。在爆炸波的情况下,参数化的PDE是时间依赖性和非线性的。对于此类问题,依赖于模式的线性叠加的适当正交分解(POD)不能有效地近似溶液。这里开发的分段POD-DL方案是基于时间域分区的局部ROM,并且是通过POD获得的第一维降低。自动编码器用作降低第二和非线性维度。然后,从时间和参数空间通过深度向前神经网络重建所获得的潜在空间。提出的方案应用于一个示例,该示例包括在空气中传播的爆炸波和建筑物外部的影响。显示了基于深度学习的ROM在近似时间依赖性压力场中的效率。

In recent years, large-scale numerical simulations played an essential role in estimating the effects of explosion events in urban environments, for the purpose of ensuring the security and safety of cities. Such simulations are computationally expensive and, often, the time taken for one single computation is large and does not permit parametric studies. The aim of this work is therefore to facilitate real-time and multi-query calculations by employing a non-intrusive Reduced Order Method (ROM). We propose a deep learning-based (DL) ROM scheme able to deal with fast transient dynamics. In the case of blast waves, the parametrised PDEs are time-dependent and non-linear. For such problems, the Proper Orthogonal Decomposition (POD), which relies on a linear superposition of modes, cannot approximate the solutions efficiently. The piecewise POD-DL scheme developed here is a local ROM based on time-domain partitioning and a first dimensionality reduction obtained through the POD. Autoencoders are used as a second and non-linear dimensionality reduction. The latent space obtained is then reconstructed from the time and parameter space through deep forward neural networks. The proposed scheme is applied to an example consisting of a blast wave propagating in air and impacting on the outside of a building. The efficiency of the deep learning-based ROM in approximating the time-dependent pressure field is shown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源