论文标题

可乐:通过协作扩展改善对话推荐系统

COLA: Improving Conversational Recommender Systems by Collaborative Augmentation

论文作者

Lin, Dongding, Wang, Jian, Li, Wenjie

论文摘要

会话推荐系统(CRS)旨在采用自然语言对话,向用户建议合适的产品。了解用户对潜在项目的偏好和学习有效的项目表示对CRS至关重要。尽管尝试了各种尝试,但早期的研究主要是基于单个对话来学习的项目表示,而忽略了所有其他研究的知名度。此外,由于单个对话中反映的信息是有限的,因此他们仍然需要有效捕获用户偏好的支持。受协作过滤的启发,我们提出了一种协作增强方法(COLA)方法,以同时改善项目表示学习和用户偏好模型以解决这些问题。我们从所有对话中构建一个交互式用户信息图,该图表通过用户意识信息(即项目受欢迎程度)增强项目表示形式。为了改善用户偏好建模,我们从培训语料库中检索了类似的对话,其中反映用户潜在兴趣的涉及项目和属性用于通过门控制来增强用户表示。两个基准数据集的广泛实验证明了我们方法的有效性。我们的代码和数据可在https://github.com/dongdinglin/cola上找到。

Conversational recommender systems (CRS) aim to employ natural language conversations to suggest suitable products to users. Understanding user preferences for prospective items and learning efficient item representations are crucial for CRS. Despite various attempts, earlier studies mostly learned item representations based on individual conversations, ignoring item popularity embodied among all others. Besides, they still need support in efficiently capturing user preferences since the information reflected in a single conversation is limited. Inspired by collaborative filtering, we propose a collaborative augmentation (COLA) method to simultaneously improve both item representation learning and user preference modeling to address these issues. We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information, i.e., item popularity. To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation through gate control. Extensive experiments on two benchmark datasets demonstrate the effectiveness of our method. Our code and data are available at https://github.com/DongdingLin/COLA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源