论文标题

基于人群模板的大脑图扩展用于改进一声学习分类

Population Template-Based Brain Graph Augmentation for Improving One-Shot Learning Classification

论文作者

Özgür, Oben, Rekik, Arwa, Rekik, Islem

论文摘要

收集有关神经系统障碍诊断问题的医学数据的挑战为学习方法稀缺铺平了道路。由于这个原因,一声学习仍然是最具挑战性和最趋势的深度学习概念之一,因为它建议模拟分类问题中类似人类的学习方法。先前的研究重点是使用图形神经网络(GNN)和连接脑图数据生成更准确的人群指纹。因此,生成的名为Connectional Brain模板(CBT)的人群指纹启用了分类任务的歧视性生物标志物。但是,以前从未解决过代表大脑连接性的单个图数据的数据增强问题的反向问题。在本文中,我们提出了一条增强管道,以便对我们的二元分类问题提供改进的指标。与以前的研究相差,我们通过利用基于图的生成对抗网络(GGAN)体系结构来检查单个种群模板的增强,以解决分类问题。我们在AD/LMCI数据集上进行了基准测试解决方案,该数据集由与阿尔茨海默氏病(AD)和晚期轻度认知障碍(LMCI)组成的脑连接组成。为了评估模型的概括性,我们使用了交叉验证策略,并多次随机采样折叠。引入了一个样本产生的增强数据时,我们的分类结果不仅提供了更好的准确性,而且还可以在其他指标上产生更平衡的结果。

The challenges of collecting medical data on neurological disorder diagnosis problems paved the way for learning methods with scarce number of samples. Due to this reason, one-shot learning still remains one of the most challenging and trending concepts of deep learning as it proposes to simulate the human-like learning approach in classification problems. Previous studies have focused on generating more accurate fingerprints of the population using graph neural networks (GNNs) with connectomic brain graph data. Thereby, generated population fingerprints named connectional brain template (CBTs) enabled detecting discriminative bio-markers of the population on classification tasks. However, the reverse problem of data augmentation from single graph data representing brain connectivity has never been tackled before. In this paper, we propose an augmentation pipeline in order to provide improved metrics on our binary classification problem. Divergently from the previous studies, we examine augmentation from a single population template by utilizing graph-based generative adversarial network (gGAN) architecture for a classification problem. We benchmarked our proposed solution on AD/LMCI dataset consisting of brain connectomes with Alzheimer's Disease (AD) and Late Mild Cognitive Impairment (LMCI). In order to evaluate our model's generalizability, we used cross-validation strategy and randomly sampled the folds multiple times. Our results on classification not only provided better accuracy when augmented data generated from one sample is introduced, but yields more balanced results on other metrics as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源