论文标题

查询:稀疏的多人姿势通过空间感知零件级查询

QueryPose: Sparse Multi-Person Pose Regression via Spatial-Aware Part-Level Query

论文作者

Xiao, Yabo, Su, Kai, Wang, Xiaojuan, Yu, Dongdong, Jin, Lei, He, Mingshu, Yuan, Zehuan

论文摘要

我们提出了一个稀疏的端到端多人姿势回归框架,称为Querypose,可以直接从输入图像中直接预测多人关键点序列。现有的端到端方法依靠致密表示来保留空间细节和结构以进行精确的关键定位。但是,密集的范式在推理过程中引入了复杂和冗余的后处理。在我们的框架中,每个人类实例都由与实例级查询相关的几个可学习的空间感知零件级查询进行编码。首先,我们提出了空间嵌入生成模块(SPEGM),该模块(SPEGM)考虑了局部空间注意机制来生成几个空间敏感的部分嵌入,其中包含空间细节和结构信息,以增强零件级别的查询。其次,我们介绍了选择性迭代模块(SIM),以通过生成的空间敏感零件嵌入阶段来自适应地更新稀疏的零件级查询。根据提出的两个模块,零件级查询能够完全编码空间详细信息和结构信息以进行精确的关键重点回归。借助两分匹配,Querypose避免了手工设计的后处理,并在MS Coco Mini-Val Set上使用73.6 AP和人群测试集上的72.7 AP超过了现有的密集端到端方法。代码可从https://github.com/buptxyb666/querypose获得。

We propose a sparse end-to-end multi-person pose regression framework, termed QueryPose, which can directly predict multi-person keypoint sequences from the input image. The existing end-to-end methods rely on dense representations to preserve the spatial detail and structure for precise keypoint localization. However, the dense paradigm introduces complex and redundant post-processes during inference. In our framework, each human instance is encoded by several learnable spatial-aware part-level queries associated with an instance-level query. First, we propose the Spatial Part Embedding Generation Module (SPEGM) that considers the local spatial attention mechanism to generate several spatial-sensitive part embeddings, which contain spatial details and structural information for enhancing the part-level queries. Second, we introduce the Selective Iteration Module (SIM) to adaptively update the sparse part-level queries via the generated spatial-sensitive part embeddings stage-by-stage. Based on the two proposed modules, the part-level queries are able to fully encode the spatial details and structural information for precise keypoint regression. With the bipartite matching, QueryPose avoids the hand-designed post-processes and surpasses the existing dense end-to-end methods with 73.6 AP on MS COCO mini-val set and 72.7 AP on CrowdPose test set. Code is available at https://github.com/buptxyb666/QueryPose.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源