论文标题
EFT可能性的现场推理的一致性测试
Consistency tests of field level inference with the EFT likelihood
论文作者
论文摘要
在原则上分析星系的聚类有望访问所有可用的宇宙学信息。鉴于这一激励措施,在本文中,我们使用大规模结构(LSS)的有效田间理论(EFT)框架研究了基于场基的前向建模方法的性能。我们通过将这种形式主义应用于合成数据集的一组一致性和收敛测试来做到这一点。我们通过结合哈密顿蒙特卡洛采样来探索LSS初始条件的高维关节后部,并在初始条件领域进行切片采样,以进行宇宙学和模型参数。我们从[1](最高到二阶)采用Lagrangian扰动理论模型,用于有偏见的示踪剂的正向模型。我们在EFT框架中特别包含合成数据集中的模型错误特异性。我们通过以更高的截止量表$λ_0$生成合成数据来实现这一目标,该数据控制哪种模式输入EFT可能性评估,而不是推理中使用的截止$λ$。在存在模型错误特异性的情况下,我们发现EFT框架仍然允许稳健,无偏的关节推断a)宇宙学参数 - 特别是初始条件的缩放幅度 - b)初始条件本身,c)偏见和噪声参数。此外,我们表明,在纯线性情况下,在后验可以分析性障碍的情况下,我们的采样器完全探索后表面。在非线性正向模型的情况下,我们还证明了收敛性。我们的发现是对[2-7]中开发的基于EFT磁场的前向模型框架的确认,并且是迈向真实星系调查的现场级宇宙学分析的又一步。
Analyzing the clustering of galaxies at the field level in principle promises access to all the cosmological information available. Given this incentive, in this paper we investigate the performance of field-based forward modeling approach to galaxy clustering using the effective field theory (EFT) framework of large-scale structure (LSS). We do so by applying this formalism to a set of consistency and convergence tests on synthetic datasets. We explore the high-dimensional joint posterior of LSS initial conditions by combining Hamiltonian Monte Carlo sampling for the field of initial conditions, and slice sampling for cosmology and model parameters. We adopt the Lagrangian perturbation theory forward model from [1], up to second order, for the forward model of biased tracers. We specifically include model mis-specifications in our synthetic datasets within the EFT framework. We achieve this by generating synthetic data at a higher cutoff scale $Λ_0$, which controls which Fourier modes enter the EFT likelihood evaluation, than the cutoff $Λ$ used in the inference. In the presence of model mis-specifications, we find that the EFT framework still allows for robust, unbiased joint inference of a) cosmological parameters - specifically, the scaling amplitude of the initial conditions - b) the initial conditions themselves, and c) the bias and noise parameters. In addition, we show that in the purely linear case, where the posterior is analytically tractable, our samplers fully explore the posterior surface. We also demonstrate convergence in the cases of nonlinear forward models. Our findings serve as a confirmation of the EFT field-based forward model framework developed in [2-7], and as another step towards field-level cosmological analyses of real galaxy surveys.