论文标题
基本的合理联系的符号歧管群
Fundamental groups of rationally connected symplectic manifolds
论文作者
论文摘要
我们表明,每个列举合理联系的封闭式歧管的基本组都是有限的。换句话说,如果一个封闭的符号歧管具有两个点插入的非零gromov-inten不变性,则它具有有限的基本组。我们还表明,如果与这种非零gromov-witten不变性相关的球形同源性类是荷兰形态性不可分解的,那么符号歧管的理性第二个同源性具有排名第一。
We show that the fundamental group of every enumeratively rationally connected closed symplectic manifold is finite. In other words, if a closed symplectic manifold has a non-zero Gromov-Witten invariant with two point insertions, then it has finite fundamental group. We also show that if the spherical homology class associated to such a non-zero Gromov-Witten invariant is holomorphically indecomposable, then the rational second homology of the symplectic manifold has rank one.