论文标题
集成多模式数据以进行复杂动力学的联合生成建模
Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics
论文作者
论文摘要
许多(即使不是大多数)科学感兴趣的系统自然被描述为非线性动力学系统。从经验上讲,我们通常通过时间序列测量访问这些系统。通常,这种时间序列可能由离散的随机变量而不是连续测量组成,或者可以由同时观察到的多种数据模式的测量组成。例如,在神经科学中,除峰值计数和连续的生理记录外,我们可能还具有行为标签。到目前为止,有关于动态系统重建(DSR)深度学习的新兴文献(DSR),在这种情况下,几乎没有考虑过多模式数据集成。在这里,我们提供了一种高效且灵活的算法框架,该框架基于多模式变异自动编码器,用于产生稀疏的教师信号,以指导训练重建模型,从而利用了DSR培训技术的最新进展。它可以将各种信息来源结合起来以进行最佳重建,甚至可以单独从符号数据(类标签)进行重建,并连接共同的潜在动态空间中的不同类型的观测值。与以前的科学应用多模式数据集成技术相反,我们的框架是完全\ textit {生成},在训练之后,产生具有与地面真实系统相同几何和时间结构的轨迹。
Many, if not most, systems of interest in science are naturally described as nonlinear dynamical systems. Empirically, we commonly access these systems through time series measurements. Often such time series may consist of discrete random variables rather than continuous measurements, or may be composed of measurements from multiple data modalities observed simultaneously. For instance, in neuroscience we may have behavioral labels in addition to spike counts and continuous physiological recordings. While by now there is a burgeoning literature on deep learning for dynamical systems reconstruction (DSR), multimodal data integration has hardly been considered in this context. Here we provide such an efficient and flexible algorithmic framework that rests on a multimodal variational autoencoder for generating a sparse teacher signal that guides training of a reconstruction model, exploiting recent advances in DSR training techniques. It enables to combine various sources of information for optimal reconstruction, even allows for reconstruction from symbolic data (class labels) alone, and connects different types of observations within a common latent dynamics space. In contrast to previous multimodal data integration techniques for scientific applications, our framework is fully \textit{generative}, producing, after training, trajectories with the same geometrical and temporal structure as those of the ground truth system.