论文标题
通过条件扩散概率模型生成逼真的大脑MRI
Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic Model
论文作者
论文摘要
由于获取MRI是昂贵的,因此神经科学研究很难获得足够的数量来适当训练深度学习模型。 MRI综合可以减少这一挑战,因为生成性对抗网络(GAN)很受欢迎。但是,甘斯通常是不稳定的,并且在创建多样化和高质量的数据方面挣扎。一个更稳定的替代方法是具有细粒度训练策略的扩散概率模型(DPM)。为了克服他们对广泛的计算资源的需求,我们提出了一个有条件的DPM(CDPM),其记忆有效的过程产生了现实的大脑MRIS。为此,我们训练一个2D CDPM,以在同一MRI的另一个部分中生成MRI子体积。通过使用条件和目标切片之间的任意组合生成切片,该模型仅需要有限的计算资源来学习切片之间的相互依存关系,即使它们在空间上是遥远的。通过注意网络了解了这些依赖性后,通过反复应用CDPM来产生新的解剖结构3D脑MRI。我们的实验表明,我们的方法可以生成高质量的3D MRI,该MRI具有与真实MRI相似的分布,同时仍使训练集多样化。该代码可在https://github.com/xiaoiker/mask3dmri_diffusion上找到,也将作为Monai的一部分发布,网址为https://github.com/project-monai/generativemodels。
As acquiring MRIs is expensive, neuroscience studies struggle to attain a sufficient number of them for properly training deep learning models. This challenge could be reduced by MRI synthesis, for which Generative Adversarial Networks (GANs) are popular. GANs, however, are commonly unstable and struggle with creating diverse and high-quality data. A more stable alternative is Diffusion Probabilistic Models (DPMs) with a fine-grained training strategy. To overcome their need for extensive computational resources, we propose a conditional DPM (cDPM) with a memory-efficient process that generates realistic-looking brain MRIs. To this end, we train a 2D cDPM to generate an MRI subvolume conditioned on another subset of slices from the same MRI. By generating slices using arbitrary combinations between condition and target slices, the model only requires limited computational resources to learn interdependencies between slices even if they are spatially far apart. After having learned these dependencies via an attention network, a new anatomy-consistent 3D brain MRI is generated by repeatedly applying the cDPM. Our experiments demonstrate that our method can generate high-quality 3D MRIs that share a similar distribution to real MRIs while still diversifying the training set. The code is available at https://github.com/xiaoiker/mask3DMRI_diffusion and also will be released as part of MONAI, at https://github.com/Project-MONAI/GenerativeModels.