论文标题

RG在二维球形缺陷上流动

RG flows on two-dimensional spherical defects

论文作者

Shachar, Tom, Sinha, Ritam, Smolkin, Michael

论文摘要

我们研究了D维综合场理论中的二维球形缺陷。我们认为,在此类缺陷上重新归一化组(RG)允许存在减少的熵函数。在流动的固定点,熵函数等于异常系数,该系数将缺陷的Weyl异常中的Euler密度乘以。我们的构造证明了RG流在二维缺陷上的不可逆性的替代推导。此外,在扰动RG流动的情况下,熵函数单调降低并起着C功能的作用。我们提供了一个简单的示例,可以明确处理拟议构造中的RG流量细节。

We study two-dimensional spherical defects in d-dimensional Conformal Field Theories. We argue that the Renormalization Group (RG) flows on such defects admit the existence of a decreasing entropy function. At the fixed points of the flow, the entropy function equals the anomaly coefficient which multiplies the Euler density in the defect's Weyl anomaly. Our construction demonstrates an alternative derivation of the irreversibility of RG flows on two-dimensional defects. Moreover in the case of perturbative RG flows, the entropy function decreases monotonically and plays the role of a C-function. We provide a simple example to explicitly work out the RG flow details in the proposed construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源