论文标题

具有复合域知识管理的动态世界中的测试时间适应

Test-time Adaptation in the Dynamic World with Compound Domain Knowledge Management

论文作者

Song, Junha, Park, Kwanyong, Shin, InKyu, Woo, Sanghyun, Zhang, Chaoning, Kweon, In So

论文摘要

在部署机器人系统之前,在所有潜在视觉案例上预先训练深度识别模型在实践中都是不可行的。因此,测试时间适应(TTA)允许该模型适应新的环境并在测试时间(即终身适应性)中提高其性能。 TTA的几项作品在不断变化的环境中显示出令人鼓舞的适应性性能。但是,我们的研究表明,现有方法容易受到动态分布变化的影响,并且通常导致TTA模型过度拟合。为了解决这个问题,本文首先提出了具有复合域知识管理的强大TTA框架。我们的框架有助于TTA模型收集多个代表性域(即复合域)的知识,并根据复合域知识进行TTA。此外,为了防止TTA模型过度拟合,我们设计了新颖的正则化,该正规化使用源和当前目标域之间的域相似度调节适应速率。随着拟议的框架和正则化的协同作用,我们在不同的TTA方案中实现了一致的性能提高,尤其是在动态域变化上。我们通过广泛的实验演示了提案的普遍性,包括Imagenet-C上的图像分类以及GTA5,C驾驶和损坏的CityScapes数据集的语义分割。

Prior to the deployment of robotic systems, pre-training the deep-recognition models on all potential visual cases is infeasible in practice. Hence, test-time adaptation (TTA) allows the model to adapt itself to novel environments and improve its performance during test time (i.e., lifelong adaptation). Several works for TTA have shown promising adaptation performances in continuously changing environments. However, our investigation reveals that existing methods are vulnerable to dynamic distributional changes and often lead to overfitting of TTA models. To address this problem, this paper first presents a robust TTA framework with compound domain knowledge management. Our framework helps the TTA model to harvest the knowledge of multiple representative domains (i.e., compound domain) and conduct the TTA based on the compound domain knowledge. In addition, to prevent overfitting of the TTA model, we devise novel regularization which modulates the adaptation rates using domain-similarity between the source and the current target domain. With the synergy of the proposed framework and regularization, we achieve consistent performance improvements in diverse TTA scenarios, especially on dynamic domain shifts. We demonstrate the generality of proposals via extensive experiments including image classification on ImageNet-C and semantic segmentation on GTA5, C-driving, and corrupted Cityscapes datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源