论文标题
多目标重构优化中的搜索预算:基于模型的经验研究
Search Budget in Multi-Objective Refactoring Optimization: a Model-Based Empirical Study
论文作者
论文摘要
软件模型优化是自动生成设计替代方案的任务,通常是为了改善可量化的质量方面,例如性能和可靠性。在这种情况下,已应用多目标优化技术来帮助设计师在几种非功能性属性中找到合适的权衡。在此过程中,可以通过自动模型重构生成设计替代方案,并在非功能模型上进行评估。由于它们的复杂性,这种类型的优化任务需要大量的时间和资源,通常会限制其在软件工程过程中的应用。 在本文中,我们研究了使用搜索预算,特别是时间限制的影响,以搜索新解决方案。我们进行了实验,以量化搜索预算变化可能对解决方案质量的影响。此外,我们分析了不同预算时不同的遗传算法(即NSGA-II,SPEA2和PESA2)如何执行。我们对两个大小,复杂性和域的两个案例研究进行了实验。 我们观察到,强加搜索预算会大大恶化生成的解决方案的质量,但是我们选择的特定算法似乎起着至关重要的作用。从我们的实验中,NSGA-II是最快的算法,而PESA2生成了最高质量的溶液。差异不同,SPEA2是最慢的算法,并且质量最低的解决方案。
Software model optimization is the task of automatically generate design alternatives, usually to improve quality aspects of software that are quantifiable, like performance and reliability. In this context, multi-objective optimization techniques have been applied to help the designer find suitable trade-offs among several non-functional properties. In this process, design alternatives can be generated through automated model refactoring, and evaluated on non-functional models. Due to their complexity, this type of optimization tasks require considerable time and resources, often limiting their application in software engineering processes. In this paper, we investigate the effects of using a search budget, specifically a time limit, to the search for new solutions. We performed experiments to quantify the impact that a change in the search budget may have on the quality of solutions. Furthermore, we analyzed how different genetic algorithms (i.e., NSGA-II, SPEA2, and PESA2) perform when imposing different budgets. We experimented on two case studies of different size, complexity, and domain. We observed that imposing a search budget considerably deteriorates the quality of the generated solutions, but the specific algorithm we choose seems to play a crucial role. From our experiments, NSGA-II is the fastest algorithm, while PESA2 generates solutions with the highest quality. Differently, SPEA2 is the slowest algorithm, and produces the solutions with the lowest quality.