论文标题

校准光度立体声及以后的深度学习方法

Deep Learning Methods for Calibrated Photometric Stereo and Beyond

论文作者

Ju, Yakun, Lam, Kin-Man, Xie, Wuyuan, Zhou, Huiyu, Dong, Junyu, Shi, Boxin

论文摘要

光度法立体声从具有不同的阴影提示的多个图像中恢复对象的表面正态,即对每个像素处的表面取向和强度之间的关系进行建模。光度法立体声以每像素分辨率出色和精细的重建细节占上风。但是,这是一个复杂的问题,因为非lambertian表面反射率引起的非线性关系。最近,各种深度学习方法在对非陆层面表面的光度立体声中表现出强大的能力。本文对现有的基于深度学习的校准光度立体声方法进行了全面综述。我们首先从不同的角度分析这些方法,包括输入处理,监督和网络体系结构。我们总结了最广泛使用的基准数据集上深度学习光度法计算模型的性能。这证明了基于深度学习的光度立体声方法的高级性能。最后,我们根据现有模型的局限性提出建议,并提出未来的研究趋势。

Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues, i.e., modeling the relationship between surface orientation and intensity at each pixel. Photometric stereo prevails in superior per-pixel resolution and fine reconstruction details. However, it is a complicated problem because of the non-linear relationship caused by non-Lambertian surface reflectance. Recently, various deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces. This paper provides a comprehensive review of existing deep learning-based calibrated photometric stereo methods. We first analyze these methods from different perspectives, including input processing, supervision, and network architecture. We summarize the performance of deep learning photometric stereo models on the most widely-used benchmark data set. This demonstrates the advanced performance of deep learning-based photometric stereo methods. Finally, we give suggestions and propose future research trends based on the limitations of existing models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源