论文标题
神经隐式k空间,用于无包式非牙龈心脏MR成像
Neural Implicit k-Space for Binning-free Non-Cartesian Cardiac MR Imaging
论文作者
论文摘要
在这项工作中,我们提出了一个新型的图像重建框架,该框架直接学习了K-Space中的神经隐式表示,以用于ECG触发的非 - 帕特西亚心脏磁共振成像(CMR)。虽然现有方法bin从相邻的时间点获取数据以重建心脏运动的一个阶段,但我们的框架允许连续,无固定和特定于主题的k空间表示。我们为每个样品k-space点组成的独特坐标,该坐标由时间,线圈索引和频域位置组成。然后,我们使用具有频域正则化的多层感知器来学习从这些唯一坐标到K空间强度的特定于主体映射。在推断期间,我们获得了笛卡尔坐标和任意时间分辨率的完整K空间。一个简单的逆傅里叶变换可恢复图像,消除了对非牙犯数据的密度补偿的需求和昂贵的非均匀傅立叶变换。这个新颖的成像框架已在6位受试者的42个径向采样数据集上进行了测试。该方法使用四个和一个心跳和30个心脏阶段的数据在定性和定量上优于其他技术。我们的一次心跳重建50个心脏相位的结果显示了改善的伪像去除和时空分辨率,从而利用了实时CMR的潜力。
In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation.We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR.