论文标题
四维SO(3) - 球面对称的Berwald Finsler空间
Four-dimensional SO(3)-spherically symmetric Berwald Finsler spaces
论文作者
论文摘要
我们在本地对所有(3)invariant 4维伪菲斯勒Berwald结构进行分类。这些是芬斯勒的几何形状,最接近(在空间上,左右(3)) - 球形对称的伪riemannian,并用作ANSATZ,以找到芬斯勒重力方程的解决方案,从而推广了爱因斯坦方程。我们发现,存在六类非伪riemannian(即速度中的非季节)So(3) - 明显对称的伪finsler berwald函数,具有:权力定律,指数定律或一个或两种可变的依赖性。
We locally classify all SO(3)-invariant 4-dimensional pseudo-Finsler Berwald structures. These are Finslerian geometries which are closest to (spatially, or SO(3))-spherically symmetric pseudo-Riemannian ones - and serve as ansatz to find solutions of Finsler gravity equations which generalize the Einstein equations. We find that there exist six classes of non pseudo-Riemannian (i.e., non-quadratic in the velocities) SO(3)-spherically symmetric pseudo-Finsler Berwald functions, which have either: a power law, an exponential law, or a one- or two-variable dependence on the velocities.