论文标题

部分可观测时空混沌系统的无模型预测

Causal Temporal Reasoning for Markov Decision Processes

论文作者

Kazemi, Milad, Paoletti, Nicola

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We introduce $\textit{PCFTL (Probabilistic CounterFactual Temporal Logic)}$, a new probabilistic temporal logic for the verification of Markov Decision Processes (MDP). PCFTL is the first to include operators for causal reasoning, allowing us to express interventional and counterfactual queries. Given a path formula $ϕ$, an interventional property is concerned with the satisfaction probability of $ϕ$ if we apply a particular change $I$ to the MDP (e.g., switching to a different policy); a counterfactual allows us to compute, given an observed MDP path $τ$, what the outcome of $ϕ$ would have been had we applied $I$ in the past. For its ability to reason about \textit{what-if} scenarios involving different configurations of the MDP, our approach represents a departure from existing probabilistic temporal logics that can only reason about a fixed system configuration. From a syntactic viewpoint, we introduce a generalized counterfactual operator that subsumes both interventional and counterfactual probabilities as well as the traditional probabilistic operator found in e.g., PCTL. From a semantics viewpoint, our logic is interpreted over a structural causal model translation of the MDP, which gives us a representation amenable to counterfactual reasoning. We evaluate PCFTL in the context of safe reinforcement learning using a benchmark of grid-world models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源