论文标题
paschke双代数的K1注射率,用于某些简单的C*-ergebras
k1-injectivity of the Paschke dual algebra for certain simple C*-algebras
论文作者
论文摘要
令$ \ mathcal {b} $成为一个不可分离的简单稳定稳定的C* - 代数,并严格比较积极元素和具有有限极端边界的$ t(\ Mathcal {b})$,然后让$ \ Mathcal {a} $成为一个简单的不可分离的核C*-Algebra。我们证明了paschke dual代数$ \ MATHCAL {a}^d _ {\ MATHCAL {b}} $是$ k_1 $ -inigntive。 结果,我们获得了有趣的$ kk $ - 唯一性定理,从而概括了棕色 - 道格拉斯 - 弗洛尔莫尔必需的编码属性。
Let $\mathcal{B}$ be a nonunital separable simple stable C*-algebra with strict comparison of positive elements and $T(\mathcal{B})$ having finite extreme boundary, and let $\mathcal{A}$ be a simple unital separable nuclear C*-algebra. We prove that the Paschke dual algebra $\mathcal{A}^d_{\mathcal{B}}$ is $K_1$-injective. As a consequence, we obtain interesting $KK$-uniqueness theorems which generalize the Brown-Douglas-Fillmore essential codimension property.