论文标题

基于学习的FRI信号重建

Learning-Based Reconstruction of FRI Signals

论文作者

Leung, Vincent C. H., Huang, Jun-Jie, Eldar, Yonina C., Dragotti, Pier Luigi

论文摘要

有限的创新率(FRI)采样理论可以重建连续的非限制信号类别,这些信号具有少量的自由参数,它们的低率离散样本。此任务通常被转化为光谱估计问题,该问题使用涉及估计信号子空间的方法解决,该方法倾向于以一定的峰值信噪比(PSNR)分解。为了避免这种崩溃,我们考虑了使用标记数据中信息的替代方法。我们提出了两种基于模型的学习方法,包括在频谱估计中深入展开denoising过程,以及构建建模采集过程的编码器深度神经网络。两种学习算法的仿真结果表明,分解PSNR比基于经典子空间的方法的显着改善。虽然深度展开的网络的性能与经典的周五技术相似,并且在低噪声方案中的表现优于编码器码头网络,但后者即使在采样内核是未知的,也可以重建FRI信号。我们还以真正的阳性和假阳性速率来检测体内钙成像数据的脉冲,同时提供更精确的估计。

Finite Rate of Innovation (FRI) sampling theory enables reconstruction of classes of continuous non-bandlimited signals that have a small number of free parameters from their low-rate discrete samples. This task is often translated into a spectral estimation problem that is solved using methods involving estimating signal subspaces, which tend to break down at a certain peak signal-to-noise ratio (PSNR). To avoid this breakdown, we consider alternative approaches that make use of information from labelled data. We propose two model-based learning methods, including deep unfolding the denoising process in spectral estimation, and constructing an encoder-decoder deep neural network that models the acquisition process. Simulation results of both learning algorithms indicate significant improvements of the breakdown PSNR over classical subspace-based methods. While the deep unfolded network achieves similar performance as the classical FRI techniques and outperforms the encoder-decoder network in the low noise regimes, the latter allows to reconstruct the FRI signal even when the sampling kernel is unknown. We also achieve competitive results in detecting pulses from in vivo calcium imaging data in terms of true positive and false positive rate while providing more precise estimations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源