论文标题
带有私人和部分联合的自动编码器的个性化联合推荐系统
Personalized Federated Recommender Systems with Private and Partially Federated AutoEncoders
论文作者
论文摘要
在许多应用程序领域(例如数字营销)中,推荐系统(RSS)变得越来越重要。传统的RSS通常需要收集用户的数据,将它们集中在服务器端,并形成一个全局模型以生成可靠的建议。但是,他们遭受了两个关键局限性:个性化问题传统上可能不会为单个用户定制经过培训的RSS培训,并且不鼓励直接共享用户数据的隐私问题。我们提出了个性化的联合推荐系统(个人FR),该系统介绍了一个基于个性化自动编码器的推荐模型,其中包含联合学习(FL)以应对这些挑战。个人fr保证每个用户可以从本地数据集和其他参与用户的数据中学习一个个人模型,而无需共享本地数据,数据嵌入或模型。个人FR由三个主要组件组成,包括基于自动编码器的RSS(ARS),这些RSS(ARS)学习用户项目交互,部分联合学习(PFL),这些学习(PFL)在本地更新编码器并在服务器端上汇总解码器,以及仅计算和传输活动模型参数的部分压缩(PC)。在两个现实世界数据集上进行的广泛实验表明,个人FR可以实现与通过集中所有用户数据相当的私人和个性化的性能。此外,与标准FL基准相比,个人FR所需的计算和通信开销要少得多。
Recommender Systems (RSs) have become increasingly important in many application domains, such as digital marketing. Conventional RSs often need to collect users' data, centralize them on the server-side, and form a global model to generate reliable recommendations. However, they suffer from two critical limitations: the personalization problem that the RSs trained traditionally may not be customized for individual users, and the privacy problem that directly sharing user data is not encouraged. We propose Personalized Federated Recommender Systems (PersonalFR), which introduces a personalized autoencoder-based recommendation model with Federated Learning (FL) to address these challenges. PersonalFR guarantees that each user can learn a personal model from the local dataset and other participating users' data without sharing local data, data embeddings, or models. PersonalFR consists of three main components, including AutoEncoder-based RSs (ARSs) that learn the user-item interactions, Partially Federated Learning (PFL) that updates the encoder locally and aggregates the decoder on the server-side, and Partial Compression (PC) that only computes and transmits active model parameters. Extensive experiments on two real-world datasets demonstrate that PersonalFR can achieve private and personalized performance comparable to that trained by centralizing all users' data. Moreover, PersonalFR requires significantly less computation and communication overhead than standard FL baselines.