论文标题
在加权中的意见动力学中的融合,共识和张力
Convergence, Consensus and Dissensus in the Weighted-Median Opinion Dynamics
论文作者
论文摘要
机械和可拖动的数学模型在理解社会影响如何塑造公众意见方面起着关键作用。最近,已经提出了一种加权媒体机制作为意见动力学的新微观发现,并通过实验数据进行了验证。数值研究还表明,这种新机制重新创建了一些意见进化的非平凡的现实特征。在本文中,我们对加权中的观点动态进行了彻底的理论分析。我们充分表征了所有平衡的集合,并为任何初始条件建立了几乎纯净的有限时间收敛。此外,我们证明了几乎呈现为共识的必要和足够的图理论条件,以及对于几乎持久的持续性态度的足够的图理论条件。事实证明,尽管具有简单的形式,但加权中的观点动态表现出丰富的动力学行为,取决于某些精致的网络结构。为了补充我们足够的条件几乎是毫无意义的,我们进一步证明,鉴于影响网络,确定该系统几乎可以肯定地实现持续性的态度是NP-HARD,这反映了网络拓扑对意见进化的复杂性。
Mechanistic and tractable mathematical models play a key role in understanding how social influence shapes public opinions. Recently, a weighted-median mechanism has been proposed as a new micro-foundation of opinion dynamics and validated via experimental data. Numerical studies also indicate that this new mechanism recreates some non-trivial real-world features of opinion evolution. In this paper, we conduct a thorough theoretical analysis of the weighted-median opinion dynamics. We fully characterize the set of all equilibria, and we establish the almost-sure finite-time convergence for any initial condition. Moreover, we prove a necessary and sufficient graph-theoretic condition for the almost-sure convergence to consensus, as well as a sufficient graph-theoretic condition for almost-sure persistent dissensus. It turns out that the weighted-median opinion dynamics, despite its simplicity in form, exhibit rich dynamical behavior that depends on some delicate network structures. To complement our sufficient conditions for almost-sure dissensus, we further prove that, given the influence network, determining whether the system almost surely achieves persistent dissensus is NP-hard, which reflects the complexity the network topology contributes to opinion evolution.