论文标题
部分可观测时空混沌系统的无模型预测
Exactly Solvable Spin Tri-Junctions
论文作者
论文摘要
我们提出了一类完全可解决的三维自旋系统的三个杂志。基于可溶解性的几何标准,我们阐明了连接的足够条件,以使旋转汉密尔顿人变得等同于majorana二次形式。然后,我们使用获得的可溶解模型检查自旋三连接。我们考虑了横向磁场的旋转链,并揭示了Majorana零模式如何出现在链条的三个界限处。三结的局部术语至关重要地影响Majorna零模式的外观,即使散装旋转链没有Majorana End状态,Tri-Junction也可能支持Majorana零模式。我们还检查了二维SO(5) - Spin晶格的三肢,并在交界处讨论Majorana fermions。
We present a class of exactly solvable tri-junctions of one- and two-dimensional spin systems. Based on the geometric criterion for solvability, we clarify the sufficient condition for the junctions so that the spin Hamiltonian becomes equivalent to Majorana quadratic forms. Then we examine spin tri-junctions using the obtained solvable models. We consider the transverse magnetic field Ising spin chains and reveal how Majorana zero modes appear at the tri-junctions of the chains. Local terms of the tri-junction crucially affect the appearance of Majorna zero modes, and the tri-junction may support Majorana zero mode even if the bulk spin chains do not have Majorana end states. We also examine tri-junctions of two-dimensional SO(5)-spin lattices and discuss Majorana fermions along the junctions.