论文标题

通过反馈在空腔雄伟的反馈中,巨大的机械振荡器的地面冷却

Ground-state cooling of a massive mechanical oscillator by feedback in cavity magnomechanics

论文作者

Fan, Zhi-Yuan, Qian, Hang, Zuo, Xuan, Li, Jie

论文摘要

将大规模的机械振荡器的运动冷却到其量子基态中,在观察机械系统中的宏观量子效应中起着至关重要的作用。在这里,我们提出了一种基于测量的反馈冷却方案,可以在腔雄雄机械中使用,该方案能够冷却宏观铁磁铁的机械振动模式,以使其进入其基态。机械模式通过分散磁体式的相互作用将材料与磁通模式融合在一起,后者通过磁性 - 偶极相互作用将更多伴侣与微波腔模式伴侣。通过测量微波腔输出场的振幅并将力施加到机械振荡器上,该反馈回路是通过测量与输出场的振幅波动成正比的。我们表明,通过正确设计反馈增益,机械阻尼速率可以显着提高,而机械频率仍然不受影响。因此,在低温温度下,振动模式可以在未解决的边带机制中冷却到其量子基态。该协议是为使用具有强磁磁体和大镁耗散的铁磁材料而设计的。

Cooling the motion of a massive mechanical oscillator into its quantum ground state plays an essential role in observing macroscopic quantum effects in mechanical systems. Here we propose a measurement-based feedback cooling protocol in cavity magnomechanics that is able to cool the mechanical vibration mode of a macroscopic ferromagnet into its ground state. The mechanical mode couples to a magnon mode via a dispersive magnetostrictive interaction, and the latter further couples to a microwave cavity mode via the magnetic-dipole interaction. A feedback loop is introduced by measuring the amplitude of the microwave cavity output field and applying a force onto the mechanical oscillator that is proportional to the amplitude fluctuation of the output field. We show that by properly designing the feedback gain, the mechanical damping rate can be significantly enhanced while the mechanical frequency remains unaffected. Consequently, the vibration mode can be cooled into its quantum ground state in the unresolved-sideband regime at cryogenic temperatures. The protocol is designed for cavity magnomechanical systems using ferromagnetic materials which possess strong magnetostriction along with large magnon dissipation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源