论文标题
部分可观测时空混沌系统的无模型预测
Multi-band Optical Variability of the TeV Blazar PG 1553+113 in 2019
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We report the flux and spectral variability of PG 1553+113 on intra-night (IDV) to short-term timescales using BVRI data collected over 91 nights from 28 February to 8 November 2019 employing ten optical telescopes: three in Bulgaria, two each in India and Serbia, and one each in Greece, Georgia, and Latvia. We monitored the blazar quasi-simultaneously for 16 nights in the V and R bands and 8 nights in the V, R, I bands and examined the light curves (LCs) for intra-day flux and colour variations using two powerful tests: the power-enhanced F-test and the nested ANOVA test. The source was found to be significantly (> 99%) variable in 4 nights out of 27 in R-band, 1 out of 16 in V-band, and 1 out of 6 nights in I-band. No temporal variations in the colours were observed on IDV timescale. During the course of these observations the total variation in R-band was 0.89 mag observed. We also investigated the spectral energy distribution (SED) using B, V, R, and I band data. We found optical spectral indices in the range of 0.878+-0.029 to 1.106+-0.065 by fitting a power law to these SEDs of PG 1553+113. We found that the source follows a bluer-when-brighter trend on IDV timescales. We discuss possible physical causes of the observed spectral variability.