论文标题
部分可观测时空混沌系统的无模型预测
Glycolytic Wave Patterns in a Simple Reaction-diffusion System with Inhomogeneous Influx: Dynamic Transitions
论文作者
论文摘要
化学静态物种的不均匀曲线在此处的Selkov反应 - 扩散框架中描述的糖酵解波中产生了丰富的模式。进化幅度和对称性在化学静态物种谱中发挥的关键作用在决定了涉及周期性,准静脉和混乱模式的局部空间动力学的命运中,其中包括系统地研究。更重要的是,在有趣的情况下说明了各种动态过渡,包括波传播方向变化。除了数字结果外,我们对连接复杂金堡 - 兰道和兰巴达 - 欧洲加州代表的振幅方程的分析公式阐明了系统的相动态。这项对糖酵解反应 - 扩散波的系统研究与开放空间反应器中先前的实验结果一致,并将提供有关塑造和控制生物学信息处理和相关现象的动力学知识。
An inhomogeneous profile of chemostatted species generates a rich variety of patterns in glycolytic waves depicted in a Selkov reaction-diffusion framework here. A key role played by diffusion amplitude and symmetry in the chemostatted species profile in dictating the fate of local spatial dynamics involving periodic, quasiperiodic, and chaotic patterns and transitions among them are investigated systematically. More importantly, various dynamic transitions, including wave propagation direction changes, are illustrated in interesting situations. Besides numerical results, our analytical formulation of the amplitude equation connecting complex Ginzburg-Landau and Lambda-omega representation shed light on the phase dynamics of the system. This systematic study of the glycolytic reaction-diffusion wave is in line with previous experimental results in the open spatial reactors and will provide knowledge about the dynamics that shape and control biological information processing and related phenomena.