论文标题

神经网络忠实的异性疾病回归

Faithful Heteroscedastic Regression with Neural Networks

论文作者

Stirn, Andrew, Wessels, Hans-Hermann, Schertzer, Megan, Pereira, Laura, Sanjana, Neville E., Knowles, David A.

论文摘要

异源性回归模拟高斯变量的平均值和方差与协变量的函数。为这些参数图采用神经网络的参数方法可以捕获数据中的复杂关系。但是,通过对数似然梯度优化网络参数可以产生次优的均值和未校准的方差估计。当前的解决方案辅助替代目标或贝叶斯治疗的优化问题。相反,我们对优化进行了两个简单的修改。值得注意的是,它们的组合产生了一个异质模型,其平均估计值证明与同质均方体对应物相同(即〜适合平方误差损失下的平均值)。对于各种网络和任务复杂性,我们发现来自现有异质解释性解决方案的平均值估计值可能比同等表现力的均值模型的准确性明显少得多。事实证明,我们的方法保留了同样灵活的均值模型的准确性,同时还提供了一流的方差校准。最后,我们展示了如何利用我们的方法来恢复潜在的异质噪声方差。

Heteroscedastic regression models a Gaussian variable's mean and variance as a function of covariates. Parametric methods that employ neural networks for these parameter maps can capture complex relationships in the data. Yet, optimizing network parameters via log likelihood gradients can yield suboptimal mean and uncalibrated variance estimates. Current solutions side-step this optimization problem with surrogate objectives or Bayesian treatments. Instead, we make two simple modifications to optimization. Notably, their combination produces a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart (i.e.~fitting the mean under squared error loss). For a wide variety of network and task complexities, we find that mean estimates from existing heteroscedastic solutions can be significantly less accurate than those from an equivalently expressive mean-only model. Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration. Lastly, we show how to leverage our method to recover the underlying heteroscedastic noise variance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源