论文标题

MIGA:统一的多任务生成框架,用于对话文本到SQL

MIGA: A Unified Multi-task Generation Framework for Conversational Text-to-SQL

论文作者

Fu, Yingwen, Ou, Wenjie, Yu, Zhou, Lin, Yue

论文摘要

对话文本到SQL旨在将多转弯自然语言问题转化为相应的SQL查询。大多数最先进的对话文本-SQL方法与生成的预训练的语言模型(PLM)(例如T5)不相容。在本文中,我们提出了一个两阶段的统一多任务生成框架(MIGA),该框架利用PLMS来处理对话性文本到SQL的能力。在训练前阶段,MIGA首先将主要任务分解为几个相关的子任务,然后将它们统一为相同的顺序到序列(SEQ2SEQ)范式,并使用特定于任务的自然语言提示从多任务训练中提高主要任务。在微调阶段的后期,我们提出了四个SQL扰动来减轻错误传播问题。 MIGA倾向于在两个基准(SPARC和CoSQL)上实现最先进的性能。我们还提供了广泛的分析和讨论,以阐明一些新观点的对话文本到SQL。

Conversational text-to-SQL is designed to translate multi-turn natural language questions into their corresponding SQL queries. Most state-of-the-art conversational text- to-SQL methods are incompatible with generative pre-trained language models (PLMs), such as T5. In this paper, we present a two-stage unified MultI-task Generation frAmework (MIGA) that leverages PLMs' ability to tackle conversational text-to-SQL. In the pre-training stage, MIGA first decomposes the main task into several related sub-tasks and then unifies them into the same sequence-to-sequence (Seq2Seq) paradigm with task-specific natural language prompts to boost the main task from multi-task training. Later in the fine-tuning stage, we propose four SQL perturbations to alleviate the error propagation problem. MIGA tends to achieve state-of-the-art performance on two benchmarks (SparC and CoSQL). We also provide extensive analyses and discussions to shed light on some new perspectives for conversational text-to-SQL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源